acceleration of the electron

7. An airplane is flying through a thundercloud at a height of 2000 m. If there is charge concentrations of 40 C at a height of 3000 m and -40 C at a height of 2000 m, what is the electric field experienced by the airplane? [7.19 x 105 N/C]

8. Three charges of Q1=3 nC, Q2=8 nC and Q3=-5 nC are distributed on an equilateral triangle as seen in the figure below with equal distance of r=500 mm and θ=60°. Calculate the midway electric field between charges Q2 and Q3. [1.875 x 103 N/C, 4.4° below +x axis]

9. A plastic ball of mass 2 g is suspended by a string on length 20 cm in a horizontal electric field with strength of 1 x 103 N/C, as shown in the figure below. If the ball is in equilibrium when the string makes a 15° angle, what is the net charge distributed on the ball? [5.25 μC]

JG/4/2020

2

10. Charges Q1=6 nC and Q2=3- nC are separated at a distance of 60 cm. The third charge, Q3=12 nC is to be placed at an appropriate distance so that the net electrostatic force among all the three charges will be zero. Find the position of Q3 to be placed. [1.45 m after Q2]

11.An electron is accelerated by a constant electric field of magnitude 300 N/C.

a) Find the acceleration of the electron [5.27 x 1013 m/s2]

b) With the answer from a), find the electron’s speed assuming it starts from

rest with t=1 x 10-8 s [5.27 x 105 m/s]

12.In a particle beam, a proton has a kinetic energy of 3.25 x 10-15 J. What is the

magnitude of the electric field that will stop the proton in 125 cm? [1.63 x 104

N/C]

13.A proton accelerates from rest in a uniform electric field of 640 N/C. At a finite amount of time, its speed is 1.2 x 106 m/s.

a) Find the magnitude of the acceleration of the proton [6.12 x 1010 m/s2]

b) How long does it take for the proton to reach 1.2 x 106 m/s? [19.6 μs]

c) How far the proton would have moved in that interval? [11.8 m]

d) What is its final kinetic energy? [1.2 x 10-15 J]

14. Figure below shows an electrostatic deflection system consisting of two parallel

plates, each of 2.5 cm in length with a separation distance of 0.40 cm. The centre of the plates is situated 20 cm from a screen. A potential difference of 60 V is applied between the plates which creates an electric field in between the plates. An electron of speed 3.1 x 107 m/s enters the region at right angle to the field. With this information given, calculate

a) Time taken for the electron to pass through the plates [8.06 x 10-10 s]

b) Electric field strength between the plates [1.5 x 104 N/C downwards]

c) Force on the electron due to the electric field [2.4 x 10-15 N upwards]

d) Acceleration of the electron along the direction of the electric field [2.64 x

1015 m/s upwards]

e) Verticalcomponentofvelocityofelectronwhenitleavestheregionbetween the plates [2.13 x 106 m/s]

15.Two parallel plates are illustrated below that have a uniform electric field of 6100 N/C and directed to the right. A charge of +1e with mass of 1.67 x 10-27 kg is inserted between the two plates.

a) Find the electric force exerted on the charge [9.76 x 10-16 N towards the

right]

b) Find the acceleration of the charge [5.84 x 1011 m/s2]

JG/4/2020

3

c) Are the direction of the electric force and charge the same? Justify your answer.

d) Calculate the potential differences between the two parallel plates [305 V]

e) Calculatetheworkdonebytheelectricforcetomovethechargefrompoint

A to point B with the distance ‘d’ [4.88 x 10-17 J]

16.A positive charge of +9 x 10-9 C is located at the origin. How much of work is required to bring a positive charge of +3 x 10-9 C from infinity to the location x = 30 cm? [8.09 x 10-7 J]

JG/4/2020

4

Hide 

Calculate the price of your order

Simple Order Process

Fill in the Order Form

Share all the assignment information. Including the instructions, provided reading materials, grading rubric, number of pages, the required formatting, deadline, and your academic level. Provide any information and announcements shared by the professor. Choose your preferred writer if you have one.

Get Your Order Assigned

Once we receive your order form, we will select the best writer from our pool of experts to fit your assignment.

Share More Data if Needed

You will receive a confirmation email when a writer has been assigned your task. The writer may contact you if they need any additional information or clarifications regarding your task

Let Our Essay Writer Do Their Job

Once you entrust us with your academic task, our skilled writers embark on creating your paper entirely from the ground up. Through rigorous research and unwavering commitment to your guidelines, our experts meticulously craft every aspect of your paper. Our process ensures that your essay is not only original but also aligned with your specific requirements, making certain that the final piece surpasses your expectations.

Quality Checks and Proofreading

Upon the completion of your paper, it undergoes a meticulous review by our dedicated Quality and Proofreading department. This crucial step ensures not only the originality of the content but also its alignment with the highest academic standards. Our seasoned experts conduct thorough checks, meticulously examining every facet of your paper, including grammar, structure, coherence, and proper citation. This comprehensive review process guarantees that the final product you receive not only meets our stringent quality benchmarks but also reflects your dedication to academic excellence.

Review and Download the Final Draft

If you find that any part of the paper does not meet the initial instructions, send it back to us with your feedback, and we will make the necessary adjustments.